

TRINITY COLLEGE DUBLIN coláiste na tríonóide, baile átha cliath

Irish Research Counc for Science, Engineerin and Technolog

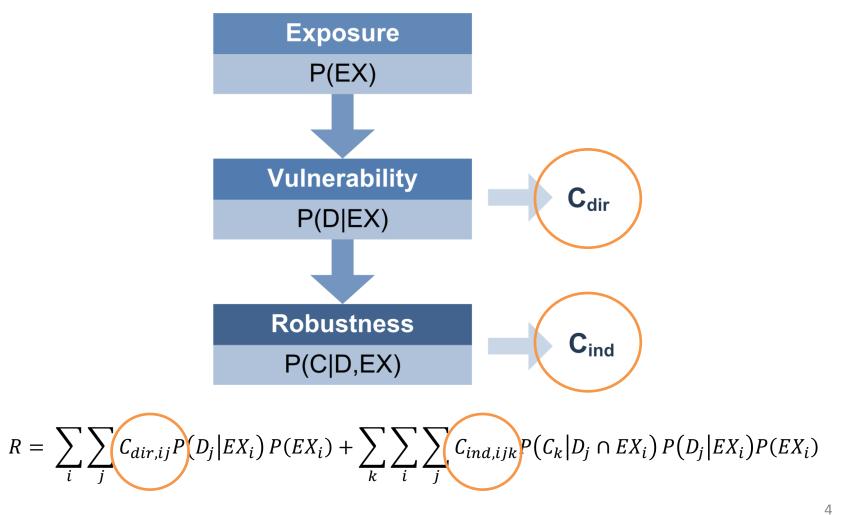
Building Failure Consequences

V Janssens¹, D W O'Dwyer¹, M K Chryssanthopoulous²

¹Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Ireland ²Division of Civil, Chemical and Environmental Engineering, University of Surrey, United Kingdom

Contents

- Introduction
- Influencing factors
- Failure consequences and the Eurocodes
- Classification of damage severity
- Classification of consequences
- Human consequences
- Economic consequences
- Environmental consequences
- Discussion


Introduction

- Consequences:- "the possible result[s] of an (in risk analysis usually unwanted) event" EN 1991-1-7.
- Building failure consequences can come in many forms e.g. fatalities, structural damage, loss of functionality etc.
- Often divided into two categories (according to the *system boundary definition*):
 - Direct consequences are those resulting from damage states of individual component(s)
 - Indirect consequences are related to a loss of system functionality or failure, as a result of local failure

3

Introduction

ŀ

Influencing factors

The consequences of failure vary significantly from structure to structure, and may depend on:

- Nature of the hazard
- Properties of the structure
- Use/occupancy
- Location
- Time of day
- Time frame considered

Failure consequences & the Eurocodes

- EN1991-1-7 classifies buildings according to their consequences of failure to determine how accidental design situations should be dealt with
 - CC1: Low consequence for loss of human life, and economic, social or environmental consequences are small or negligible
 - CC2: Medium consequence for loss of human life, and economic, social or environmental consequences are considerable
 - CC3: High consequence for loss of human life, and economic, social or environmental consequences are very great

6

Failure consequences & the Eurocodes

Consequence Class	Example of categorisation of building type and occupancy
1	Single occupancy houses less than 5 storeys. Agricultural buildings. Buildings into which people rarely go.
2a (lower risk group)	5 storey single occupancy houses. Multiple occupancy residential buildings and offices less than 5 storeys. Retail buildings less than 4 storeys, up to 1000 m ² floor area/storey. All public buildings less than 3 storeys, up to 2000 m ² floor area/storey.
2b (Upper risk group)	Multiple occupancy residential buildings and offices from 5 to15 storeys. Retailing premises from 4 to15 storeys. All public buildings with between 2001 m ² and 5000 m ² floor area/storey.
3	Buildings not meeting the lesser requirements for classes 1 or 2. Buildings admitting people in significant numbers. Buildings containing hazardous substances and/or processes.

Classification of damage severity

- Level of damage can be used to estimate consequences
- Consistent measure of damage severity is required
- A number of models exist relating the level of damage following earthquakes to the observed consequences e.g. the European Macroseismic Scale (EMS)
- These approach could be adapted and applied to building failures caused by accidental actions

Classification of damage severity

Grade	Damage Level	% of horizontal area collapsed
D0	No Damage	0%
D1	Negligible to slight damage	<1%
	No structural damage, slight non-structural damage	
D2	Moderate damage	1-10%
	Slight structural damage, moderate non-structural damage	
D3	Substantial to heavy damage	10-50%
	Moderate structural damage, heavy non-structural damage	
D 4	Very heavy damage	50-80%
	Heavy structural damage, very heavy non-structural damage	
D5	Destruction	80-100%
	Very heavy structural damage	
		classification for damag

roposed classification for damage resulting from accidental actions

Classification of consequences

	Direct Consequences	Indirect Consequences
Human	Injuries	Injuries Estalities
	Fatalities	Fatalities Psychological Damage
Economic	Replacement/repair of initial damage Replacement/repair of contents Clean up costs Rescue costs	Replacement/repair of structure Replacement/repair of contents Clean up costs Rescue costs Loss of functionality Regional economic effects Investigation/compensation
Environmental	CO ₂ Emissions Energy use Toxic releases	CO ₂ Emissions Energy use Toxic releases Environmental Studies/Repair
Social		Loss of reputation Changes in professional practice

11

FATALITIES

- Coburn, Spence et al. developed a model for predicting fatalities as a result of building collapse following earthquake
- For a class of building, *b*, the authors defined the number of people killed, *K*_s, as

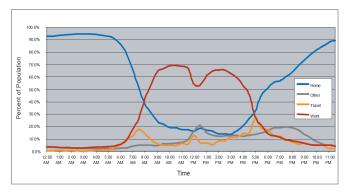
$$Ks_b = D5_b * [M1_b * M2_b * M3_b * (M4_b + M5_b)]$$

FATALITIES

 $Ks_b = D5_b * [M1_b * M2_b * M3_b * (M4_b + M5_b)]$

• $D5_b$ is the total number of collapsed structures of building type b

FATALITIES


- $Ks_b = D5_b * [M1_b] * M2_b * M3_b * (M4_b + M5_b)]$
- *M1* is the number of people per building type *b*

FATALITIES

 $Ks_b = D5_b * [M1_b * M2_b * M3_b * (M4_b + M5_b)]$

- *M2* represents the percentage of the people in the building at collapse
- Determined using detailed occupancy level graphs or average values

Typical average daily occupancy levels(Nathwani, Lind et al., 1997)Residential urban65%Non-residential urban40%Rural agricultural45%

FATALITIES

 $Ks_b = D5_b * [M1_b * M2_b * (M3_b) * (M4_b + M5_b)]$

- *M3* accounts for the fact only a portion of the occupants will be trapped by the resulting damage/collapse
- For building collapse due to accidental actions,

$$M3 = \frac{1}{n+1} \left(\alpha \sum_{i=h}^{n} A_{\% col,i} + \beta \sum_{i=0}^{h-1} A_{\% col,i} \right)$$

• For damage levels *D4-5*, and when the time to collapse is relatively small

$$\alpha = 1.0, \beta = 1 - 0.5/h$$

i = 3

i = 2

i = 1

i = 0

h = 2

16

FATALITIES

 $Ks_b = D5_b * [M1_b * M2_b * M3_b * (M4_b) + M5_b)]$

- *M4* signifies the number of people killed instantly by the collapse, as a percentage of *M3*
- For earthquakes, and depending on the type of building, Coburn gave the following value for *M4*

Masonry0.2Reinforced concrete0.4

• Further studies required to quantify this value for failure resulting from accidental actions

17

FATALITIES

 $Ks_b = D5_b * [M1_b * M2_b * M3_b * (M4_b + M5_b)]$

- *M5* is the post-collapse mortality factor
- Dependant on the severity of injuries caused by collapse
- Can be considered a measure of effectiveness of the rescue operations/medical activities
- For earthquakes, and depending on the type of building, Coburn gave the following ranges of values for *M5* Masonry 0.45 - 0.90
 Reinforced concrete 0.70 - 0.90

FATALITIES

- The number of fatalities can be used directly as a measure of the consequences of building collapse
- Otherwise, to quantify the fatalities in monetary terms, we must quantify the 'economic' value of human life:
 - Value of statistical life
 - Money spent on government programmes per life saved
 - Willingness to pay approach (WTP)
 - Earnings lost due to premature death
 - Life Quality Index (LQI)
 - Large range of values cited, a mean of €1-2m is often used 19

INJURIES

- Cost of injuries may include:
 - Pre-hospital emergency treatment
 - Emergency department services
 - Hospital physician and surgeon services
 - Visits to private physicians
 - Rehabilitation costs
 - Loss of earnings
 - Compensation for pain and suffering

INJURIES


- The type of injuries observed (and their severity) is dependant on:
 - The hazard
 - The resulting level of damage
 - The building type
- Research undertaken in medical profession and in the field of earthquake engineering forms a good starting point

PSYCHOLOGICAL DAMAGE

- Experienced by persons injured/exposed to event (and possibly the relatives of any person killed/injured)
- Psychological effects summarised by Faizian et al. as fear, helplessness, distress and depression
- Dependant on:
 - Type/severity of injury
 - Buildings use (Kanda and Shah)
 - Loss/damage caused (Faizian et al.)
- May be included in injury cost or dealt with seperately

REPLACEMENT/REPAIR

- Replacement/repair of structural components (structural consequences)
 - Depends on the extent of damage, structure type, size etc.
 - Should account for all building components
- Replacement/repair of its contents (non-structural consequences)
 - Depends on the extent of damage, nature of contents, market price etc.
- HAZUS building replacement cost models (US $/m^2$)

CLEAN-UP COSTS

- Cost of removal and disposal is dependant on quantity, type and size of debris
- May be included in the cost of repair/replacement (*beware of double counting*)

Rescue costs

- Cost associated with providing emergency services (ambulance, fire brigade etc.)
- Estimated by taking the number of fatalities and injuries, and multiplying them by a suitable cost per person
- May be included in human consequences, as part of the injury cost (*beware of double counting*)

LOSS OF FUNCTIONALITY

- Greatest for structures that must function in emergency operations, following a failure event (e.g. hospitals, fire stations, power plants etc.)
- For a business, could be computed from the lost gross domestic product (GDP) or lost value added
- Temporary relocation

REGIONAL ECONOMIC EFFECTS

- For a single building failure due to non-malicious actions the economic effect tends to be short-term and a relatively minor consequence
- Significant for failures arising from malicious actions
 E.g. collapse of the WTC Twin Towers
- Compare an economic indicator (e.g. GCP) before and after the event
- Include job and wage losses
- Highly variable and may require economic expertise

COST OF INVESTIGATIONS/COMPENSATION

• Dependent on the structure type, use, occupancy, ownership etc.

CO₂ EMISSIONS/ENERGY USE

- During repair/replacement of the structure
- Increased emissions (if any) due to loss of functionality
- Site fuel usage during repair/replacement works may also be accounted for
- CO₂ emissions usually cited in tonnes of carbon difficulties may arise when converting this to a cost

Material	Carbon emitted
Steel	1820 Kg CO ₂ /te
Cement	$800 \text{ Kg CO}_2/\text{te}$
Reinforced Concrete	260-450 Kg CO ₂ /te

TOXIC RELEASES

- Cost of polluting the environment, and harming the natural habitats of plants, animals and humans
- Likely to be large only for buildings with special functions

ENVIRONMENTAL STUDIES/REPAIR

- Dependent on the location and use of the structure
- May be able to estimate by studying similar examples

Social Consequences

34

Social Consequences

LOSS OF REPUTATION

- Long-term effect (how long?) of a structural failure on business activities
- May be included in the economic effects (*beware of double counting*)
- Again may require economic expertise to determine

Social Consequences

CHANGES IN PROFESSIONAL PRACTICE

- Building failures may lead to less conservative safety requirements increase in cost
- May discourage certain method of construction/use of material etc.
- Difficult to anticipate when performing a pre-emptive consequence analysis

36

Discussion

- The range of consequences of building failure due to accidental actions and their influencing factors have been discussed
- Approaches for estimating some types of consequences have been outlined
- Difficulties in performing a consequence analysis arise from limited information for collapse due to accidental actions
 - Learn from earthquake engineering
 - Future reports on building failures should include details on consequences

Acknowledgement

This factsheet was produced as a result of a STSM, which was completed at the University of Surrey. I would like to thank the COST office, Prof Faber and Prof Chryssanthopoulos for making this worthwhile exchange possible.

TRINITY COLLEGE DUBLIN coláiste na tríonóide, baile átha cliath

Irish Research Counc for Science, Engineering and Technolog

Thank You

Final Conference, COST Action TU0601, Robustness of Structures, 30-31 May 2011, Prague, Czech Republic